Яркость — функция цвета. Когда глаз воспринимает лучи света различного цвета, но одной и той же интенсивности, то цвета, расположенные в середине спектра, будут казаться ярче, чем цвета, расположенные на концах спектра. Это показано на рис. 6, 5; кривая, изображенная на этом рисунке, известна как кривая спектральной яркости света. Это явление имеет практическое значение, так как, если мы хотим, чтобы сигнализирующий об опасности свет был ясно виден, он должен быть окрашен в цвет, к которому глаз максимально чувствителен, то есть в цвет, расположенный в середине спектра. Дело осложняется еще и тем, что кривые чувствительности для палочек и колбочек несколько различны. Они сходны по общему виду, однако колбочки более чувствительны к оранжевому цвету, а палочки — к зеленому. (На этом основании есть смысл окрашивать стены затемненной фотографической комнаты в зеленый цвет, так как глаза при этом получают наиболее эффективный свет, к которому фотографическая пленка относительно нечувствительна.)

Глаза и мозг. Психология зрительного восприятия _17.jpg_0

Рис. 6, 5. Этот рисунок показывает, как изменяется чувствительность глаза к различной длине световых волн в спектре, когда глаз адаптирован к свету. Черная кривая показывает чувствительность темно-адаптированного глаза, красная кривая показывает, что при адаптации к свету происходит изменение чувствительности к цветам спектра, в это время колбочки берут верх над палочками. Это явление известно под названием «сдвиг Пуркинье».

Кривая яркости света ничего не говорит нам больше о восприятии цвета. Она отражает чувствительность к свету в зависимости от длины световой волны, но вне связи с теми цветами, которые видит глаз при каждой длине световой волны. Глаза животных, не имеющих цветного зрения, обнаруживают сходную с человеческой кривую спектральной яркости света.

Можно предположить, что, помимо фотохимических изменений, связанных с процессом адаптации к свету при восприятии света действуют еще некоторые дополнительные механизмы, причем не фотохимической, а нервной природы. В частности, после завершения процесса адаптации глаза к темноте пространственные и временные характеристики остроты зрения ухудшаются, в то время как чувствительность возрастает. Однако при темновой адаптации утрачивается способность глаза различать мелкие детали. Это непростое явление, оно возникает отчасти вследствие того, что сетчатка интегрирует при этом энергию с большей зоны, то есть от большего числа рецепторных элементов. По ходу темновой адаптации увеличивается время, в течение которого может интегрироваться световая энергия, попадающая на сетчатку.

Изменения временных характеристик чувствительности глаза при темновой адаптации лучше всего, хотя и не в прямой форме, проявляются в любопытном и очень интересном явлении, известном под названием эффект маятника Пульфриха. Не менее примечательна история открытия этого эффекта, особенность которого состоит в том, что его можно наблюдать, только смотря обоими глазами, — и все же он был открыт человеком, слепым на один глаз! Этот эксперимент заслуживает того, чтобы его повторить. Возьмите длинную нитку, прикрепите к ней гирю, чтобы сделать маятник длиной в несколько футов (один фут равен 30, 48 см). Качните маятник под прямым углом к линии взора. Смотрите на колеблющуюся гирю обоими глазами, но прикройте один глаз темным, проницаемым для света стеклом (например, половинкой солнечных очков или кусочком засвеченной пленки). Тогда можно будет видеть, что гиря качается не по прямой линии, а описывает эллипс. Этот эллипс может быть очень странным: в самом деле, длинная ось может располагаться вдоль линии взора и, несмотря на это, будет казаться, что гиря, качаясь по прямой, пересекает эту линию.

Что же вызывает этот удивительный эффект? Уменьшая приток света, темное стекло вызывает процесс темновой адаптации в глазу. Адаптация приводит к задержке передачи сигнала от этого глаза к мозгу; другой глаз не участвует в этом процессе. Эта отсрочка ведет к тому, что затемненный глаз видит гирю с некоторым запозданием, а так как движение гири в середине траектории ускоряется, отсрочка в этом месте оказывается более значительной, и глаз, прикрытый фильтром, видит гирю все дальше и дальше от того места, где видит гирю другой незатемненный глаз. Эта разница в восприятии положения гири одним и другим глазом и приводит к тому, что траектория движения гири кажется эллипсом, расположенным по прямой линии к линии взора; мозг оценивает движение гири как действительно происходящее по эллипсу. Это показано на рис. 6, 3.

Глаза и мозг. Психология зрительного восприятия _15.jpg_0

Рис. 6, 3. Маятник Пульфриха. Маятник колеблется под прямым углом к линии взора наблюдателя, один глаз которого закрыт темным стеклом, причем оба глаза открыты. Наблюдателю кажется, что маятник описывает эллипс. Этот эффект возникает в результате задержки сигнала от частично адаптированного к темноте глаза, закрытого темным стеклом. При приближении маятника к середине траектории колебания увеличивается разобщение изображений, получаемых левым и правым глазами, которое оценивается мозгом как различие в расстоянии. Это и создает видимость эллипса.

По-видимому, увеличение отсрочки при темновой адаптации связано с увеличением времени интеграции возбуждения, подобно тому как фотограф прибегает к более длительной экспозиции при тусклом освещении. Мы видим этот эффект непосредственно, когда наблюдаем, как увеличивается огненный след, оставляемый в темном небе разорвавшимися ракетами фейерверка, так как в темноте усиливаются процессы темповой адаптации.

Как увеличение задержки передачи сигнала от сетчатки к мозгу, так и связанное с этим процессом увеличение времени интеграции возбуждения, имеет практическое значение. Задержка сигналов сетчатки вызывает увеличение времени реакции у шоферов при тусклом освещении, а увеличение времени интеграции возбуждения ухудшает точную локализацию движущихся объектов. В этих условиях затрудняются игры, связанные с движением; судья провозглашает: «Прекратите игру из-за слабого освещения» — задолго до того, как зрители сами убеждаются в том, что солнце садится.

ЧУВСТВИТЕЛЬНОСТЬ ГЛАЗА К СВЕТУ

При увеличении интенсивности света учащаются импульсы, идущие от рецепторов сетчатки, причем интенсивность света выражается в частоте импульсов. К сожалению, невозможно зарегистрировать электрическую активность рецепторов глаза позвоночных, потому что у них сетчатка «вывернута наизнанку», так что электроды не могут достичь рецепторов без больших повреждений. К тому времени, когда импульсы достигают зрительного нерва, они усложняются благодаря взаимосвязям нервных клеток, расположенных в различных слоях сетчатки.

Существует, однако, такой глаз, в котором рецепторы непосредственно связаны с отдельными нервными волокнами: это глаз своего рода живого ископаемого, краба Limulus, который живет на восточном побережье США. Отдельные нервные волокна глаза этого древнего краба оказались наиболее пригодными для проведения исследования, что, однако, трудно было предположить заранее. Рис. 6, 6 показывает электрическую активность нервного волокна глаза Limulus’a.

Глаза и мозг. Психология зрительного восприятия _18.jpg_0

Рис. 6, 6. Электрическая активность отдельного волокна зрительного нерва Limulus’a в ответ на три интенсивности света, записанная на осциллоскопе. Частота импульсов увеличивается в соответствии с логарифмом интенсивности света.


Перейти на страницу:
Изменить размер шрифта: