Проблема, возникающая перед мозгом, состоит в том, чтобы «решить», когда увеличение числа импульсов является просто случайным, а когда оно возникает вследствие увеличения интенсивности светового сигнала. Если бы мозг принимал любое увеличение числа импульсов по отношению к средней активности за объективный сигнал, тогда мы «видели» бы вспышки света, отсутствующие в действительности, по крайней мере, в половине случаев. Таким образом, мы приходим к мысли, что не обходимы некоторые значимые различия, чтобы возникшая нервная активность оценивалась как результат воздействия сигнала. Наименьшее различие освещенности (ΔI), которое мы можем видеть, определяется не просто чувствительностью рецепторов сетчатки, но также и различием в частоте нервных импульсов, необходимым для того, чтобы воспринять его как сигнал.

Иногда мы видим вспышки, которых на самом деле нет. По-видимому, они появляются вследствие шума, переходящего требуемый уровень значимости, вследствие готовности к восприятию сигнала, но это случается но часто.

Определение уровня, выше которого активность принимается за ответ на реальное воздействие, и используется для оценки надежности данной чувствительной системы. Существуют доказательства того, что этот уровень может колебаться и зависит от нашей «установки». Когда мы особенно осторожны, требуется большая информация и чувствительность снижается.

То, что сказано выше по поводу восприятия интенсивностей света, применимо к нервной системе в целом. Bee это справедливо не только для различения интенсивностей света, но также и в отношении абсолютного порога различения света в темноте. Абсолютный порог также определяется наименьшим сигналом, который может быть надежно выделен из случайного шума зрительной системы, существующего в мозгу и при отсутствии воздействия света на глаз.

7. Зрительное восприятие движения

Восприятие движения имеет жизненно важное значение. Для животных, стоящих на эволюционной лестнице ниже человека, движущиеся объекты являются, вероятно, сигналами либо опасности, либо потенциальной пищи и требуют быстрого соответствующего действия, в то время как неподвижные объекты могут быть игнорированы. Фактически, вероятно, только глаза высших животных могут давать мозгу информацию о неподвижных объектах.

Некоторые особенности эволюционного развития зрительной системы, начиная от глаза, способного воспринимать лишь движения, и кончая глазом, воспринимающим формы, сохранились в строении сетчатки человеческого глаза. Края сетчатки чувствительны только к движению. Это можно видеть, совершая колебательные движения каким-либо предметом в области периферии зрительного поля так, чтобы стимулировались только края сетчатки. Вы увидите, что при этом воспринимается только движение и его направление, но невозможно определить, какой предмет движется. Это очень близко к тому, что наблюдается при примитивном восприятии. Самые периферические отделы сетчатки еще более элементарны; когда они стимулируются движениями, мы еще ничего не воспринимаем, однако эта стимуляция вызывает рефлекс поворота глаз, благодаря которому изображение объекта перемещается в центральное поле зрения, с тем чтобы наиболее высоко организованная фовеальная область сетчатки с ее объединенными в нервную сеть элементами приняла участие в опознании объекта. Таким образом, периферия сетчатки представляет собой аппарат для раннего обнаружения объекта, он вызывает поворот глаз для того, чтобы цель попала на объекторазличительную часть системы, оценивающую объект как полезный, вредный или Такие глаза, как наши собственные, подвижные относительно головы, могут давать информацию о движении двумя различными способами. Когда глаз остается неподвижным, образ движущегося объекта перемещается по рецепторам сетчатки и вызывает в них быстро сменяющиеся сигналы; но когда сам глаз следует за движущимся объектом, его изображение остается более или менее неподвижным относительно сетчатки, так что оно не может быть сигналом движения, однако мы все же видим движение объекта. Если объект воспринимается на неподвижном фоне, быстро сменяющиеся сигналы могут возникать теперь от фона, который передвигается по сетчатке во время слежения глаз за движущимся объектом; однако, мы продолжаем видеть движение даже при отсутствии фона. Это можно показать на простом опыте. Попросите кого-нибудь медленно помахивать зажженной сигаретой в темной комнате и последите за ней глазами. Движение сигареты видно, хотя в данном случае нет сигналов фона, двигающихся по сетчатке. Очевидно, повороты глаз относительно головы могут дать восприятие движения и довольно точную оценку скорости движения и при отсутствии сигналов, передвигающихся по сетчатке.

Следовательно, существуют две системы восприятия движения; мы назовем одну из них (а) система изображение/сетчатка; другую (b) система глаз/голова (рис. 7, 2). (Эти названия заимствованы из артиллерийского дела, где возникают сходные ситуации, когда орудие нацеливается на объект с движущёйся палубы корабля. Орудийная башня может быть неподвижна или следовать за целью, но движение цели в каждом случае может быть обнаружено.)

Рассмотрим теперь систему изображение/сетчатка, а затем обратимся к тому, как эти две системы работают совместно.

Глаза и мозг. Психология зрительного восприятия _23.jpg_0

Рис. 7, 1. Герман фон Гельмгольц (1821–1894), выдающийся ученый в области экспериментального изучения зрения. Его «Физиологическая оптика» до сих пор остается самой значительной работой в этой отрасли знания. К сожалению, с тех пор мало что прибавилось к тому, что изложено в этой работе.

Глаза и мозг. Психология зрительного восприятия _24.jpg_0

Рис. 7, 2. а — система восприятия движения изображение/сетчатка: изображение движущегося объекта пробегает по сетчатке в то время, когда сами глаза остаются неподвижными; таким образом, информация о движении возникает путем последовательной стимуляции рецепторов в соответствии с траекторией движения объекта; b — система восприятия движения глаз/голова: когда глаз следует за движущимся объектом, изображение остается стационарным на сетчатке, но мы продолжаем видеть движение. Эти две системы иногда могут давать противоречивые показания, что приводит к любопытным иллюзиям.

СИСТЕМА ВОСПРИЯТИЯ ДВИЖЕНИЯ ИЗОБРАЖЕНИЕ/СЕТЧАТКА

С помощью регистрации электрической активности сетчатки глаз животных было обнаружено, что существуют различного рода рецепторы, подавляющее большинство которых сигнализирует только об изменении освещенности, и только немногие отвечают длительным возбуждением на постоянный свет. Некоторые рецепторы возбуждаются при включении света, другие — при его выключении, третьи — как при включении, так и при выключении. Эти различного рода рецепторы сетчатки названы соответственно рецепторами «включения», рецепторами «выключения» и рецепторами «включения — выключения». По-видимому, эти рецепторы, чувствительные только к изменениям освещения, и ответственны за сигнализацию движения; таким образом, все глаза являются прежде всего детекторами движения. Эти рецепторы, сигнализирующие только об изменении освещенности, будут отвечать на движущиеся края изображения, но не будут реагировать на неподвижные изображения до тех пор, пока сами глаза не начнут двигаться.

С помощью тонких проволочных электродов, помещенных на сетчатку изолированного глаза лягушки, было обнаружено, что анализ рецепторной активности происходит в сетчатке задолго до того, как сигналы достигнут мозга. В статье с интригующим названием «Что глаз лягушки сообщает мозгу лягушки», написанной Летвином, Матураной, Мак-Келлоком и Питсом из лаборатории электроники Массачузетского технологического института, сетчатка описывается как «детектор насекомых»; авторы обнаружили три класса волокон, посылающих в мозг различного рода информацию. «Детектор насекомых» вызывает рефлекс движения языком, когда на сетчатку падает маленькая тень, отбрасываемая, например, мухой; таким образом, сетчатка в данном случае функционирует как мозг. Кроме этой системы, которая отвечает, по существу, на кривые линии, они обнаружили:


Перейти на страницу:
Изменить размер шрифта: